
International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April -2013
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

Mapreduce Performance in Heterogeneous
Environments: A Review

Salma Khalil, Sameh A.Salem, Salwa Nassar and Elsayed M.Saad

Abstract— Mapreduce has become an important distributed processing model for large-scale data-intensive application like data mining

and web indexing. Hadoop, an open-source implementation of Mapreduce, is widely used for short jobs requiring low response time.

Mapreduce and Hadoop do not fundamentally consider heterogeneity of node and workload running in computer clusters. The current

Hadoop implementation assumes that computing nodes in the cluster are homogeneous in nature. In this article, we survey some of the

approaches that have been designed to improve the Mapreduce performance in heterogeneous environments.

Index Terms — Mapreduce, Cloud computing, Heterogeneous Environments, Hadoop, Distributed Computing, Data Locality, Fault

Tolerance.

—————————— ——————————

1 INTRODUCTION

An increasing number of popular applications become da-
ta-intensive in nature. In the past decade, the World Wide
Web has been adopted as an ideal platform for developing
data-intensive applications, since the communication para-
digm of the Web is sufficiently open and powerful. Data-
intensive applications like data mining and web indexing need
to access ever-expanding data sets ranging from a few giga-
bytes to several terabytes or even petabytes. The leading ex-
ample is Google, which uses its Mapreduce framework to pro-
cess 20 petabytes of data per day. Mapreduce is an attractive
model for parallel data processing in high-performance cluster
computing environments. Mapreduce runs on a large cluster
of commodity machines. Mapreduce offers fault tolerance that
is entirely transparent to the programmers [1].

Hadoop [2] - a popular open-source implementation of the
Mapreduce model is primarily developed by Yahoo, where it
runs jobs that produce hundreds of terabytes of data on at
least 10,000 cores [3]. Hadoop is also used at Facebook and
Amazon [4].

The Mapreduce model runs on a large cluster consists of
homogeneous nodes also assumes homogeneous workload
when making a scheduling decision. Mapreduce takes care of
the details of partitioning the input data, scheduling the pro-
gram’s execution across a set of machines, fault tolerance and
managing the required inter-machine communication. The
Mapreduce performance depends on the previous features
which appear obviously in the homogeneous environment.
The homogeneity assumption has been broken as:

 It is not always possible or even desirable to have
a large cluster consists of single type of machine.

 It is not satisfied in virtualized data centers.

 It does not take the difference of workload charac-
teristics between jobs into account when making a
scheduling decision.

Thus, the need of employing the Mapreduce model on a
heterogeneous environment becomes necessary. The hetero-
geneity affects the performance of the Mapreduce algorithm.
Many researches [6], [7], [8], [9] and [13] has discussed how
the heterogeneity affects the Mapreduce performance and de-
veloped algorithms to improve the performance of Mapreduce
in the heterogeneous environments. In this article, we survey
some of the algorithms that designed for improving the
Mapreduce performance in heterogeneous environments, and
examining their performance along with their relative
strengths and weaknesses.

The rest of this article is organized as follows. Section II in-
troduces an overview of the Mapreduce programming model,
a brief introduction to Hadoop, an overview of the Mapreduce
approaches in heterogeneous environment. Section III summa-
rizes the approaches that have been developed to improve the
data locality management of the Mapreduce model in hetero-
geneous environment. Section IV summarizes the approaches
that have been developed to improve the fault tolerance sup-
port of the Mapreduce model in heterogeneous environment.
Section V introduces a discussion about these approaches.
Section VI concludes the article.

2 BACKGROUND

2.1 Mapreduce Overview

The Mapreduce model was developed by Google [1] to run
data-intensive applications on a distributed infrastructure like
commodity cluster. Mapreduce was inspired by the map and
reduce primitives present in Lisp and many other functional
languages [1]. Mapreduce enables programmers with no spe-

————————————————

 Salma Khalil is a Research Assistant at Electronic Research Institute and is
currently preparing a master degree in Computer Engneering at Helwan Uni-
versity, Egypt. E-mail: salma_saber@eri.sci.eg

 Sameh A.Salem is Assistant Professor in Computer Engineering at Helwan
University, Egypt.

 Salwa Nassar is the Head of HPCloud team at Electronic Research Institute,
Egypt.

 Elsayed M.Saad is a Professor in Computer Engineering at Helwan University,
Egypt.

410

International Journal of Scientific & Engineering Research Volume 4, Issue 4, April -2013
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

cific knowledge of distributed programming to create her/his
Mapreduce functions running in parallel across multiple
nodes in the cluster by specifying two fundamental functions:
a map function that processes key/value pairs to generate a
set of intermediate key/value pairs, and a reduce function
merges all the intermediate values associated with the same
intermediate key. Mapreduce executes the map and reduce
functions in parallel across the nodes of the cluster.

Programmers only need to implement the map and reduce
functions, because a Mapreduce programming framework can
facilitate some operations (e.g., grouping and sorting) on a set
of key/value pairs. Mapreduce model is simple, because the
programmers just have to focus on data processing functional-
ity rather than parallelism details.

2.2 Hadoop

Hadoop’s implementation of MapReduce closely resem-
bles Google’s [2]. There is a single master managing a number
of slaves. The input file, which resides on a distributed file
system throughout the cluster, is split into even-sized chunks
replicated for fault-tolerance. Hadoop divides each MapRe-
duce job into a set of tasks. Each chunk of input is first pro-
cessed by a map task, which outputs a list of key-value pairs
generated by a user defined map function. Map outputs are
split into buckets based on key. When all maps have finished,
the reduce tasks apply a reduce function to the list of map
outputs with each key. Fig. 1 illustrates a MapReduce compu-
tation.

Fig. 1. A MapReduce computation [6].

The Hadoop framework consists of two main components:
the MapReduce language and the Hadoop’s Distributed File
System (HDFS). Hadoop runs over HDFS, in which a file is
divided into blocks and replicas of each block are stored on
nodes in the cluster. Typically the block size is 64MB and each
block has three replicas [5].

Hadoop assumes homogeneous clusters; which means that
all nodes in the clusters have the same processing power and
capability. Therefore, all nodes can finish the computation
roughly at the same time. If a machine is slower than the other
machines, it is treated as a faulty machine. In order to run the

data-intensive applications, it is required to build very large
clusters. Unfortunately, it is not always possible to have a
large cluster with single type of machines. Consequently, this
assumption is broken when deploying Hadoop in a heteroge-
neous cluster.

Hadoop assumes homogeneous workloads. In other
words, it does not take the difference of the workload charac-
teristics between jobs into account when making a scheduling
decision. Also Hadoop is not satisfied in virtualized data cen-
ters.

2.3 Mapreduce Approaches in Heterogeneous
Environment

Some researchers have discussed the degradation of
Mapreduce performance in heterogeneous environments and
presented solutions to improve its performance. Each ap-
proach improves one of the Mapreduce features that become a
defect when deploying Mapreduce in a heterogeneous cluster.
Therefore, the algorithms that represent each approach with
respect to the improved feature are summarized into two cat-
egories as shown below:

I. Data Locality Algorithms.

II. Fault Tolerance Algorithms.

3 DATA LOCALITY ALGORITHMS

Data locality is a determining factor for the Mapreduce
performance. In this section, the algorithms that have been
developed to improve data locality management in a hetero-
geneous Hadoop cluster will be discussed.

3.1 Data Placement in Heterogeneous Hadoop Clusters

 Hadoop distributes data to multiple nodes based on disk
space availability [2]. This data placement strategy is efficient
for a homogeneous environment where all the nodes have the
same computing and disk capacity. In heterogeneous Hadoop
cluster, a high-performance node can complete processing
local data faster than low-performance node. After the fast
node finished processing data residing in its local disk, the fast
node has to handle the unprocessed data in remote slow node.
The overhead of transferring unprocessed data from slow
node to fast node is high if the amount of transferred data is
huge. An approach to improve MapReduce performance in
heterogeneous environments is to reduce the amount of data
moved between slow and fast nodes in a heterogeneous clus-
ter.

J.Xie et al. [7] developed a data placement mechanism in
HDFS that distributed and stored a large data set across mul-
tiple heterogeneous nodes in accordance to the computing
capacity of each node. In other words, the number of file
fragments which distributed by data placement scheme and
placed on the disk of each node is proportional to the data
processing speed of each node.

This data placement algorithm implemented and incorpo-
rated two algorithms into Hadoop’s HDFS. First, the initial
data placement algorithm which initially distributed the file

411

International Journal of Scientific & Engineering Research Volume 4, Issue 4, April -2013
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

fragments to the heterogeneous nodes according to their com-
puting capacities. Second, the data redistribution algorithm
which reorganized the file fragments to solve the data skew
problem.

Before implementing the data placement algorithm, they
needed to measure the heterogeneity of a Hadoop cluster in
terms of data processing speed. Such heterogeneity measure-
ments in the cluster may change while executing different
Mapreduce applications because the processing speed is high-
ly depends on data-intensive applications. They introduced a
metric - called computing ratio - to measure each node pro-
cessing speed in a heterogeneous cluster.

The initial data placement algorithm begins first by divid-
ing a large input file into a number of even-sized fragments.
The responsibility of distributing the file fragments across the
nodes of the cluster is governed by a data distribution server.
It applies the round-robin algorithm to assign the input file
fragments to the heterogeneous nodes based on their compu-
ting ratios. A small value of computing ratio indicates a high
speed of node, meaning that the fast node must process a large
number of fragments. Also a large value of computing ratio of
a node indicates a low speed of the node, meaning that the
slow node must process a small number of file fragments.

Input file fragments distributed by the initial data place-
ment algorithm might be disrupted due to the following rea-
sons: (1) new data is appended to an existing input file; (2)
data blocks are deleted from the existing input file; and (3)
new data computing nodes are added into an existing cluster.
They implemented the data redistribution algorithm to reor-
ganize the file fragment based on computing ratio.

The performance of their data placement mechanism in a
heterogeneous Hadoop cluster is evaluated by using two data-
intensive applications – Grep and WordCount. Table 1 sum-
marized the parameters of the heterogeneous nodes used in
tested cluster.

Table 1: Five Nodes in a Hadoop Heterogeneous Cluster [7].

Node CPU Model CPU(hz) L1 Cache(KB)

Node A Intel Core 2 Duo 2×1G=2G 204

Node B Intel Celeron 2.8G 256

Node C Intel Pentium 3 1.2G 256

Node D Intel Pentium 3 1.2G 256

Node E Intel Pentium 3 1.2G 256

The computing ratios for the heterogeneous Hadoop clus-
ter are calculated with respect to Grep and WordCount
(shown in Table2).

Table 2: Computing Ratios for the Grep and WordCount Applications
[7].

Computer Node Ratios for Grep Ratios for WordCount

Node A 1 1

Node B 2 2

Node C 3.3 5

Node D 3.3 5

Node E 3.3 5

Six data placement decisions are used (as shown in Table3)
to evaluate their work.

Fig. 2 shows the result of applying the decisions shown in
Table 3 with data placement algorithm. Fig. 2(a) shows that
S1-2-3.3 in Table 3 is the optimal decision for Grep to distrib-
ute data to the nodes of the tested cluster. Also, Fig. 2(b)
shows that S1-2-5 in Table 3 is the optimal decision for Word-
Count.

Table 3: Six Data Placement Decisions [7].

Notation Data Placement Decisions

S1-2-3.3 Distributing files under the computing ratios of the
grep. (This is an optimal data placement for Grep)

S1-2-5 Distributing files under the computing ratios of the
wordcount. (This is an optimal data placement for

WordCount)

480 in each Average distribution of files to each node.

All-in-A Allocating all the files to node A.

All-in-B Allocating all the files to node B.

All-in-C Allocating all the files to node C.

(a)

(b)

Fig. 2. Performance of data placement algorithm with respect to: (a)
Grep and (b) WordCount [7].

3.2 Data Locality Aware Task Scheduling Method for

Heterogeneous Environments

 In this research, the work is built upon the method to improve
data locality of Mapreduce in homogeneous computing environ-
ments [10]. The method assumed that all nodes processing tasks
have similar speed when selecting the node to issue the request. If
the input data of a task is stored on the node, the method reserves
the task for the node. However, this assumption cannot be held in

412

International Journal of Scientific & Engineering Research Volume 4, Issue 4, April -2013
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

the cloud computing, because there are many factors that can
change the processing speed of the processors such as, the hetero-
geneity of the computational resources and its dynamic workload.
Consequently, there is a need to develop an effective heterogeneity-
oriented scheduling algorithm to improve the data locality man-
agement for Mapreduce model.

X.Zhang et al. [9] introduced a data locality aware scheduling
method for heterogeneous Hadoop cluster. There are two factors
affect the efficiency of map tasks execution; waiting time – is the
shortest time that the task has to wait before it can be scheduled to
one of the nodes that have the input data, transmission time – is the
time needed to copy the input data of the task to the requesting
node.

The objective is to make a tradeoff between the waiting time
and transmission time at runtime when schedule a task to a node
to obtain the optimal task execution time. After receiving a request
from a requesting node, the method first schedules the task whose
input data is stored on the requesting node. If there is no such kind
of tasks, the method first selects the task whose input data is stored
in the nearest node with respect to the requesting node. Then the
method computes the waiting time and the transmission time of
the selected task. If the waiting time is shorter than the transmis-
sion time, the method reserves the task for the node having the
input data. Otherwise, it schedules the task to the requesting node.

A node can execute more than one task simultaneously. A node
can issue a request whenever it completes a task and successive
tasks have to wait for scheduling until the node completes its cur-
rent tasks. Thus, the waiting time of the tasks whose input data are
stored on the node can be represented by the shortest remaining
time of all the tasks executing in the same node. Tasks are sched-
uled to the requesting node according to their probabilities.

The remaining time of the task can be calculated by the follow-
ing equation [9]:

 () {

 ()∏

∑ ∏

The scheduling method has been implemented in Hadoop-
0.20.2. The topology of the tested cluster is illustrated by Fig. 3.
Three evaluation criteria have been used to evaluate the system
performance: (i) The number of the map tasks not scheduled to the
nodes with the input data; (ii) The normalized execution time; and
(iii) The response time of jobs. It is desirable that the system can
obtain values smaller than the values of the default method.

Fig. 3. The topology of the tested cluster [9].

Table 4 shows the details of the jobs. Two scenarios are intro-
duced to execute these jobs. In scenario 1, the maximum of the
tasks concurrently running on a node is configured with 2. In sce-
nario 2, the maximum is configured with 3. Only the result of sce-
nario 1 will be shown in this article.

Table 4: The details of the jobs [9].

Job Name Block Size of
HDFS(MB)

Input Data
Size GB

Map Tasks Reduce Tasks

I 64 2.6 41 2

II 128 5.0 41 2

III 256 10.1 41 2

Comparing with the default Hadoop, the mean number of jobs

I and II are reduced by 13% and 4 % respectively in (shown in Fig.
4). In the best case, the normalized execution time is reduced by
12%. Also, Hadoop with the proposed method achieved shorter
response time.

Fig. 4. The number of the tasks not scheduled to the nodes with the

input data in scenario 1 [9].

Fig. 5. The normalized execution times of jobs I, II and III in scenario 1

[9].

Fig. 6. The response times of jobs I, II and III in scenario 1 [9].

413

International Journal of Scientific & Engineering Research Volume 4, Issue 4, April -2013
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

4 FAULT TOLERANCE ALGORITHMS

A key benefit of Mapreduce is that it automatically handles
failures and hides the complexity of the fault tolerance from
the programmers.

Hadoop’s performance is closely tied to its task scheduler,
which assumes that the cluster nodes are homogeneous and
tasks make progress linearly. Hadoop’s scheduler uses these
assumptions to decide when to speculatively re-execute tasks
that appear to be stragglers. Hadoop’s scheduler starts specu-
lative tasks based on a simple heuristic comparing each task’s
progress to the average progress. This heuristic works well in
the homogeneous environments where the stragglers are ob-
vious. Hadoop’s scheduler can cause server performance deg-
radation in heterogeneous environments because the underly-
ing assumptions are broken.

In this section, the algorithms that have been developed to
improve fault tolerance support in the heterogeneous Hadoop
cluster will be discussed.

4.1 LATE: Longest Approximate Time to End Algorithm

M.Zaharia et al. [6] designed a new scheduling algorithm
for speculative execution, LATE algorithm, which is highly
robust to heterogeneity. LATE reduces Hadoop’s response
time by a factor of 2. LATE is based on three principles: priori-
tizing tasks to speculate, selecting fast nodes to run on, and
capping speculative tasks to prevent thrashing.

When a node has an empty task slot, Hadoop chooses a
task for it from one of three categories. First, any failed tasks
are given the highest priority. Second, non-running tasks are
considered, specially the map tasks that have local data on this
node. Third, the tasks which need to execute speculatively.

Hadoop monitors task progress using progress score be-
tween 0 and 1 to select speculative tasks. For a map task, the
progress score is the fraction of the input data read. For a re-
duce task, the execution is divided into three phases (copy
phase, sort phase, reduce phase), each of which represents 1/3
of the progress score. Hadoop defines a threshold for specula-
tive execution using the average progress score of each catego-
ry of tasks (maps and reduces). When a task’s progress score is
less than the average off its category minus 0.2, and the task
has run at least one minute, it is marked as a straggler.

LATE always speculatively executes the task which will
finish farthest in the future. LATE estimates the task’s finish
time based on the progress score provided by Hadoop. Ha-
doop estimates the progress rate of each task as Pro-
gressScore/T , where T is the amount of time the task has been
running for, and then estimate the task’s finish time as
(1−ProgressScore)/ProgressRate.

LATE performance is evaluated using two environments:
large cluster on Amazon Elastic Computing Cloud (EC2) [11]
and a local virtualized testbed. Fig. 7 shows the response time
achieved by each scheduler in the heterogeneous EC2 cluster.
Fig. 8 shows the response time by each scheduler when strag-
glers exist.

4.2 SAMR: A Self-Adaptive Mapreduce Scheduling
Algorithm

LATE scheduling algorithm [6] takes the heterogeneity as-
sumptions into consideration, but has poor performance due
to the static manner in computing the progress of the tasks.
Consequently, neither Hadoop nor LATE schedulers are de-
sirable in heterogeneous environment.

Q.Chen et al. [8] proposed SAMR scheduling algorithm,
which calculates the progress of the tasks dynamically. SAMR
adopted the idea of LATE scheduling algorithm and proposed
a modified version to improve Mapreduce in terms of saving
the time of the execution and the system’s resources. SAMR
decreases the time of the execution up to 25% compared with
Hadoop’s scheduler and 14% compared with LATE scheduler.

SAMR is using historical information recorded on each
node to tune parameters and find slow tasks dynamically.
SAMR updates the values after every execution. SAMR is tak-
ing the two stages characteristic of map tasks into considera-
tion. SAMR is classifying slow nodes into map slow nodes and
reduce slow nodes.

SAMR performance is evaluated using virtual machines
built upon a cluster of five personal computers.

Fig. 9 shows the efficiency of SAMR when running Sort
benchmark. The execute time of Hadoop is used as the base-
line. Hadoop without backup mechanism spends about dou-
ble time in executing the same job. LATE decreases about 7%
execute time, LATE using historical information mechanism
decreases about 15% execute time, SAMR decreases about 24%
execute time compared to Hadoop.

Fig. 7. EC2 sort running in heterogeneous cluster [6].

Fig. 8. EC2 sort running with stragglers [6].

414

International Journal of Scientific & Engineering Research Volume 4, Issue 4, April -2013
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

Fig. 9. The results of running the sort benchmark on the experiment
platform [8].

5 DISCUSSION

This article reviews some of the approaches that have been
developed to improve the Mapreduce performance in the het-
erogeneous environments. The features of the Mapreduce
model perform poorly in a heterogeneous computing cluster.

Data locality management is one of the features that have
worse affect on the Mapreduce performance [12]. Bad data
locality management increases the execution time of the
Mapreduce job. Some of approaches have been recently intro-
duced [7], [9] to improve the data locality management in het-
erogeneous Mapreduce clusters. These approaches have some
limitations. The first approach [7] of data locality management
did not consider the data replication. If a node crashes, its in-
put files are lost because there was no duplication of the input
files. Additionally, it does not automatically support the fault
tolerance feature. This approach can be enhanced by handling
the redundancy issue of data allocation in the cluster, and de-
signing a dynamic distribution mechanism for multiple data
intensive applications. The second approach [9] of data locali-
ty management did not consider the workload heterogeneity.
This approach can be enhanced by developing more effective
technique for transmitting the data sets in the Hadoop envi-
ronments. Also, this approach can be enhanced by a more ac-
curate estimation of the transmission time.

Another feature that has bad effect on the Mapreduce per-
formance is the fault tolerance. If this feature is not consid-
ered, this may need re-submitting the whole job that has one
or more unaccomplished tasks. Some of recent approaches
have been proposed [6], [8] to improve the fault tolerance in
heterogeneous Mapreduce clusters. LATE algorithm [6] and
SAMR [8] algorithm do not consider the data locality man-
agement for launching backup tasks. The LATE algorithm is
estimating the time left to detect the faulty tasks. This method
does not work properly when the tasks slow down. Different
methods can be used to accurately estimate the time left in
order to enhance the LATE algorithm. Also, estimating com-
pletion time for each phase in the reduce task independently
can enhance the LATE algorithm. For SAMR algorithm, a bet-
ter mechanism for tuning the parameters can be introduced to
enhance Mapreduce performance.

It should be noted that the integration of data locality with
fault tolerance approaches can improve the overall Mapreduce
performance in the heterogeneous environments. This integra-
tion will gather the advantages of these approaches and en-
hance the Mapreduce performance in the heterogeneous clus-
ters. Therefore, there is a need for an approach for enhancing
more than one feature of the Mapreduce model in the hetero-
geneous clusters. This will lead to have a Mapreduce model in
the heterogeneous environments with performance similar to
the performance of the Mapreduce model in the homogeneous
environments.

6 CONCLUSION

In this article, an investigation of the key features that af-
fect Mapreduce performance in heterogeneous environments
is presented. These include data locality and fault tolerance.
As demonstrated, some of recent approaches are presented
along with a further discussion on their relative strengths and
weaknesses. Also, some enhancements that can be developed
to improve the performance of the Mapreduce model in the
heterogeneous environments have been highlighted. As dis-
cussed, there is a need to integrate data locality and fault tol-
erance approaches to improve the overall Mapreduce perfor-
mance in heterogeneous computing clusters. This integration
may provide an acceptable performance for the Mapreduce
model in heterogeneous environments.

REFERENCES

[1] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large
clusters. In Proceedings of the 6th conference on Symposium on Opearting
Systems Design & Implementation - Volume 6, pages 10–10, Berkeley, CA,
USA, 2004. USENIX Association.

[2] Hadoop, http://lucene.apache.org/hadoop, (last view June 30, 2012).

[3] Yahoo! launches worlds largest hadoop production application,
http://developer.yahoo.com/blogs/hadoop/posts/2008/02/yahoo-worlds-
largest-production-hadoop/, (last view June 30, 2012).

[4] Applications powered by Hadoop,
http://wiki.apache.org/hadoop/PoweredBy, (last view June 30, 2012).

[5] K.Shvachko, H.Kuang, S.Radia, R.Chansler. The Hadoop Distributed File
System. In proceeding the 26th IEEE Symposium on Massive Storage Systems
and Technologies, 2010.

[6] M.Zaharia, A.Konwinski, A.Joseph, Y.zatz, and I.Stoica. Improving mapre-
duce performance in heterogeneous environments. In OSDI’08: 8th USENIX
Symposium on Operating Systems Design and Implementation, October
2008.

[7] J.Xie, S.Yin, X.Ruan, Z.Ding, Y.Tian, J.Majors, A.Manzanares, and X.Qin.
Improving MapReduce Performance through Data Placement in Heteroge-
neous Hadoop Clusters. In proceedings of IEEE International parallel and dis-
tributed Processing Symposium, 2010.

[8] Q.Chen, D.Zhang, M.Guo, Q.Deng and S.Guo. SAMR: A Self-adaptive
MapReduce Scheduling Algorithm In Heterogeneous Environment. In Pro-
ceedings of IEEE 10th International Conference on Computer and Infor-
mation Technology, 2010.

[9] X.Zhang, Y.Feng, S.Feng, J.Fan and Z.Ming. An Effective Data Locality Aware
Task Scheduling Method for MapReduce Framework in Heterogeneous En-
vironments. In International Conference on Cloud and Service Computing,
2011.

[10] X. Zhang, Z. Zhong, B. Tu, S. Feng, and J. Fan. Improving data locality of
mapreduce by scheduling in homogeneous computing environments. In Pro-
ceedings of IEEE 9th International Symposium on Parallel and Distributed
Processing with Applications, pages 120–126, Busan, Korea, 2011. IEEE.

[11] Amazon Elastic Compute Cloud, http://aws.amazon.com/ec2, (last view
June 30, 2012).

415

http://lucene.apache.org/hadoop
http://developer.yahoo.com/blogs/hadoop/posts/2008/02/yahoo-worlds-largest-production-hadoop/
http://developer.yahoo.com/blogs/hadoop/posts/2008/02/yahoo-worlds-largest-production-hadoop/
http://wiki.apache.org/hadoop/PoweredBy
http://aws.amazon.com/ec2

International Journal of Scientific & Engineering Research Volume 4, Issue 4, April -2013
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

[12] Z.Guo, G.Fox, M.Zhou. Investigation of Data Locality in MapReduce. In
Proceeding of IEEE/ACM 12th International Symposium on Cluster, Cloud
and Grid Computing, 2012.

[13] Z.Guo, G.Fox. Improving MapReduce Performance in Heterogeneous Net-
work Environments and Resource Utilization. In proceeding of IEEE/ACM
12th International Symposium on Cluster, Cloud and Grid Computing, 2012.

[14] Fourth Ann. Allerton Conf. Circuits and Systems Theory, pp. 8-16, 1994. (Con-

ference proceedings)

[15] H. Goto, Y. Hasegawa, and M. Tanaka, “Efficient Scheduling Focusing on the

Duality of MPL Representation,” Proc. IEEE Symp. Computational Intelli-

gence in Scheduling (SCIS ’07), pp. 57-64, Apr. 2007,

doi:10.1109/SCIS.2007.367670. (Conference proceedings)

[16] J. Williams, “Narrow-Band Analyzer,” PhD dissertation, Dept. of Electrical

Eng., Harvard Univ., Cambridge, Mass., 1993. (Thesis or dissertation)

[17] E.E. Reber, R.L. Michell, and C.J. Carter, “Oxygen Absorption in the Earth’s

Atmosphere,” Technical Report TR-0200 (420-46)-3, Aerospace Corp., Los

Angeles, Calif., Nov. 1988. (Technical report with report number)
[18] L. Hubert and P. Arabie, “Comparing Partitions,” J. Classification, vol. 2, no. 4,

pp. 193-218, Apr. 1985. (Journal or magazine citation)
[19] R.J. Vidmar, “On the Use of Atmospheric Plasmas as Electromagnetic Reflec-

tors,” IEEE Trans. Plasma Science, vol. 21, no. 3, pp. 876-880, available at
http://www.halcyon.com/pub/journals/21ps03-vidmar, Aug. 1992. (URL
for Transaction, journal, or magzine)

[20] J.M.P. Martinez, R.B. Llavori, M.J.A. Cabo, and T.B. Pedersen, "Integrating
Data Warehouses with Web Data: A Survey," IEEE Trans. Knowledge and
Data Eng., preprint, 21 Dec. 2007, doi:10.1109/TKDE.2007.190746.(PrePrint)

416

